椭圆中心为原点O.e为2分之根号2.准线方程为2根号2.设动点满足向量OP=OM+2ON.M.N在椭圆上.OM与ON斜率

问题描述:

椭圆中心为原点O.e为2分之根号2.准线方程为2根号2.设动点满足向量OP=OM+2ON.M.N在椭圆上.OM与ON斜率...
椭圆中心为原点O.e为2分之根号2.准线方程为2根号2.设动点满足向量OP=OM+2ON.M.N在椭圆上.OM与ON斜率积为-1/2.是否存在F1,F2.使|PF1|+|PF2|为定值.若存在,求F1F2两点坐标.不存在,说明理由.
1个回答 分类:数学 2014-09-17

问题解答:

我来补答
a/e=2√2,a=2,c=√2,b=√2,:x^2/4+y^2/2=1,M(x1,y1),N(x2,y2),P(x3,y3),OP=(x1+2x2,y1+2y2),x1x2+2y1y2=0,令x=x3/√5,y=y3/√5,
x^2/(2√5)^2+y^2(√10)^2=1,c=√10,F1(-√10,0),F2(√10,0),存在
?
?
展开全文阅读
剩余:2000
黄色视频网